

Page Locking By Design Mathias Magnusson Page 1

Page Locking By Design

by Mathias Magnusson
July 2008

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

Page Locking By Design Mathias Magnusson Page 2

Table of Contents

Introduction
The Design Pattern
The Test Case
Conclusion

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

Page Locking By Design Mathias Magnusson Page 3
 Introduction

We have all seen design patterns that are bad by themselves, but when coupled with how the
technology involved works they turn into a disaster. This paper will look at one such situation that the author
has seen a few too many times lately. First we will review the design pattern and some theory about the
database concept involved after which a test case is reviewed.

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

Page Locking By Design Mathias Magnusson Page 4
 The Design Pattern

It is fairly common in the systems I encounter (granted I’m usually working on systems that
experiences serious performance problems than on those that just perform like a dream) that complex
transactions are designed to start with creating a row in the main table that the transaction later goes back to
update. Not only is this of course far from optimal, it is often also done by only giving values to the primary
key and leaving the rest to be updated later on. If this was the end of this design pattern, it would be bad enough
and a change would probably be needed to make the system perform better. The reason this is likely to never be
done is that changing this often leads to complex code changes as well as implementing a revised data model.

What makes this design pattern much worse is the concept Oracle calls ITL. Let’s review what ITL is.
It stands for “Interested Transaction List”, and it is part of how Oracle manages row level locks. Each
transaction that has an active lock on a row in a block will be listed in the block headers section for ITL. If a
transaction attempts to update a row in a block and there is an empty spot in the ITL, then it will be entered into
that spot and the update continues. If, on the other hand, the list is full and cannot be extended, the update will
wait until a spot frees up. The ITL is automatically extended if there is room in the block for it between the
block header and the beginning of the data for the rows. The block header is written from the top of the block
and the rows are added from the bottom so what space is available is located between them so the header can be
expanded as needed. However, if there is enough data in the block that another ITL entry cannot be added, then
Oracle will just let the transaction wait.

As a result of this, you will get a wait on the block (page) if all entries in the ITL are full with active
transactions and a new transaction tries to update a row in the block even if no other transaction is updating that
row.

Fortunately this does not happen too often as most rows are large enough that you have few enough to
not get ITL locks too often. However, row migration is another database concept that impacts this. Row
migration occurs when a row is updated, the new size is larger than it used to be and the block doesn’t have
room for the size of the new row. Thus, row migration only occurs when the size of a row grows. The chance
that there will be no room left is of course greater when a row grows with many bytes than when it grows with
just a few. The design pattern here is such that the row often will go from 5-15 bytes to a few hundred. One
recent case had it go from 4 bytes to over 500, not including overhead on each row. Why is this bad? A row that
is migrated moves to a new block and as a result gets a new rowid and the ITL on that block manages this row
now, right?

It turns out that this is not at all how it works. Row migration is done by leaving a pointer from the old
location to the new. This makes sense and is maybe not a surprise to anyone, what may be a surprise is that
while the row is migrated it is managed as if it still resided in the original block. That is, if you had 600 rows in
an 8K block from the beginning and then moved them to blocks where you have maybe 25 rows in each block,
all updates to those 600 rows would still result in acquiring an ITL entry on the original block. The small row
sizes from the beginning causes us to get a very hot index page for all these rows. Since the rows were small
from the beginning, we will not get much space in the block to free up as a result of the migrated rows.

Let’s look at a test case where we first fill a block with small rows, then migrate three of them and then try to
update each of those three rows from three different sessions.

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

Page Locking By Design Mathias Magnusson Page 5
 The Test Case

Thew following test case was tested on Oracle DB ​11gR1, ​but should work the same way on all
versions. I know of no part of this effect that is bound to a certain version.

Let’s first set up the user while being logged in as SYSTEM.
create user itl identified by itl; grant create session, resource to

itl;

Next step is to create the two tables we’ll use. This is to be executed while logged in as “itl”.
create table itl_test (a number not null ,b varchar2(3000)

null ,c varchar2(3000) null) pctfree 0; create table

chained_rows (owner_name varchar2(30), table_name

varchar2(30), cluster_name varchar2(30), partition_name

varchar2(30), subpartition_name varchar2(30), head_rowid

rowid, analyze_timestamp date);

The table itl_test is the table we will use to test the effect this document is about. The table
chained_rows is just the DDL from utlchn1.sql (use utlchain.sql for releases < 8.1) in the database’s oracle
home. We will use this to check how many rows that are migrated.

The table is created with pct_free of 0, it is to make the test case easier as the default would force us to
make some smaller updates to make sure we fill up the block. This table will also give us the default of two ITL
entries. The effect can of course be shown with many more ITL entries, it’s just a matter of how many rows to
update. More ITL entries by default may waste space, but could also reduce the likelihood of this kind of
contention occurring in your production system.

Our next step is to fill a block with data. On my system this results in 660 rows in the first block and a
single row in another block. This last row is not needed or used, it’s just the row that showed that the original
block is now filled with data.
declare

 rid rowid;

 start_block number;

 new_block number;

begin

 insert

 into itl_test

 (a,b,c)

 values (1,null,null)

 returning rowid

 into rid;

 start_block := dbms_rowid.

 rowid_block_number(rid);

 for i in 2..2000 loop

 insert

 into itl_test

 (a,b,c)

 values(i,null,null)

 returning rowid

 into rid;

 new_block := dbms_rowid.

 rowid_block_number(rid);

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

Page Locking By Design Mathias Magnusson Page 6

 if not start_block = new_block

 then

 exit;

 end if;

 end loop;

end;

/

commit;

Now that we have rows with id 1-660 (on an 8K block in my database) in our first block we’ll cause
the first three (a =1,2,3) rows to migrate to three different blocks.

update itl_test set b = rpad('x', 3000, 'x') ,c = rpad('x',

3000, 'x') where a <= 3;

Each row is made to be > 6,000 bytes long. Since the block is 8K and the first page was full from the
beginning, these three rows will be placed on three new blocks. We can verify that three rows migrated with the
following code.

analyze table itl_test list chained rows; select * from

chained_rows; select * from itl_test where rowid in (select

head_rowid from chained_rows);

This select will show the three rows that was migrated. We know from how we updated them that they
cannot share a block so we have a lot of rows on the initial page and the three migrated rows on a block each.

Our next step is to update the three migrated rows in three different sessions.

session 1: update itl_test set b=’b’ ,c=’c’ where a = 1;

session 2: update itl_test set b=’b’ ,c=’c’ where a = 2;

session 3: update itl_test set b=’b’ ,c=’c’ where a = 3;

The third session will now hang and wait for session 1 or 2 to complete their transactions. The reason it
is waiting can be seen in v$session.

select sid

 ,event

 ,blocking_session

 ,seconds_in_wait

 from v$session

 where event# = 201;

This select will return the session that is now waiting for an ITL entry to free up. This shows that we
are waiting for an ITL entry even though the three rows are on different blocks. The same thing would of course
happen if you tried it before we moved the rows as they then were on the same block and there is no room left
on it.

It is worth to note that the same effect occurs if we had migrated fewer or more rows as well as if we
update rows that are not migrated or a mix of migrated and non migrated rows. There is no link between the
number of rows we migrate and the number of rows we update. This effect of locking ITL entries on the block
where rows originally were placed is not tied to any other part, it always occurs when a row is updated. Testing
where a = 4,5,6 or 1,2,6 will show you the same locking behavior and proves that this is not an effect just of
migrated rows.

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

Page Locking By Design Mathias Magnusson Page 7

A reasonable question at this point is of course if the same would happen if we had inserted the rows
this large instead of migrating them through the update statement. Logic tells us this should then not happen, but
it is a good test for two reasons. First it validates that this is caused by updating a small row that is migrated and
leaving one block with hundreds of references for rows that are now located elsewhere. The second benefit is
that it allows us to show and prove how this issue can be resolved after the fact. We’re only changing to avoid
having migrated rows, the design that causes new ones to be added has to be revisited in order for this situation
to not occur again.

When we ran the analyze table command we populated the table chained_rows with one row per
migrated row showing data about the row. One of the columns in the table is the rowid that we used to show the
rows that were marked as migrated. We will now use it to copy the migrated row to another table, delete the
rows in itl_test, and then insert the rows back. This way the migrated row is removed and a row is inserted at
it’s final size so no migration occurs.

create table itl_temp as select * from itl_test where rowid

in (select head_rowid from chained_rows); delete

from itl_test where rowid in (select head_rowid

from chained_rows); insert into itl_test select * from itl_temp;

drop table itl_temp delete from chained_rows; analyze table itl_test

list chained rows; select * from chained_rows;

The last select now returns no rows, showing that there are no migrated rows in the table. Running the three
updates in three separate session will now also work, showing that the ITL problem stems from having once had
them on the same block. The migration is what will cause the lock to be taken on the block the row was first
inserted on.

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

Page Locking By Design Mathias Magnusson Page 8
 Conclusion

What did we learn from all this? The main lesson is that sometimes bad design can be made worse by
technology conspiring to make your life miserable.

A form of page level locks can occur when the ITL list cannot expand. A rows original page has an
ITL entry used when a row is updated that has ben migrated away from that page.

We also learned that boring subjects like ITL can be really cool, at least if you’re enough of a database
geek to appreciate the architectural decisions Oracle has made while building the Oracle database.

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

