

The case for CASE Mathias Magnusson Page 1

The case for CASE

By
Mathias Magnusson

November 2009

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

The case for CASE Mathias Magnusson Page 2

Table of Contents

Introduction

Select

Update

Where

Order By

Group By

Pivot
Conclusion

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

The case for CASE Mathias Magnusson Page 3

Introduction
In this document we will look closer at the keyword CASE in SQL. While it often is treated just as a

readable replacement for decode, it has a few more uses. Readability is a feature in itself, but the most
misunderstood part of case among developers is how flexible it is.

This article will only look at the basic use and not try to dig into every aspect of it. Thus it is geared more
towards the intermediate SQL user than to the experts.

Select
The CASE keyword was introduced in 8i (9i for PL*SQL) and essentially replaces DECODE. I

confess to never liking decode, though it is powerful, it is also ugly and sometimes close to unreadable. Case
introduces a few things decode cannot do, but it makes it more accessible to those who write SQL occasionally.
It is easier to get a case formatted nicely than it is to do the same with decode.

The basic syntax for case is:

select empno

 ,ename

 ,case

 when sal < 1500 then 'low'

 when sal between 1500 and 3000 then 'mid'

 when sal > 2500 then 'high'

 end sal_class

 from emp;

Here we have classified the people by their salary. Those earning less than 1500 will be tagged as low,
those earning 1500-2500 will be mid, and those earning more will be high. This kind of case construct is called
searched and is the kind I find most often in SQL. There is however a simpler version that can be used when the
comparison is on just one value and against just one value per condition. This has the creative name of simple
case.

select empno

 ,ename

 ,case deptno when 10 then 'Dept 10'

 when 20 then 'Dept 20'

 when 30 then 'Dept 30'

 end dept

 from emp;

This basic example just rewrites the value of deptno to have “Dept” in front of it. It shows the use of
the simple case. It is often forgotten and rewritten as a searched case even when the simple case would do.

One thing to note here is that the else construct that can be used to give a value when a situation not
covered in the conditions is encountered is not mandatory in SQL the way it is in PL/SQL. In SQL it defaults to
null while it ends up with an exception in PL/SQL. The last example could be enhanced to use else like this:

select empno

 ,ename

 ,case deptno when 10 then 'Dept 10'

 when 20 then 'Dept 20'

 else 'unknown'

 end

 from emp;

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

The case for CASE Mathias Magnusson Page 4

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

The case for CASE Mathias Magnusson Page 5

You recognize a simple case on the expression between the case and when keywords. The expression
is the department number (deptno). A searched case has nothing between case and when.

In this example, department 30 was not know at the time the SQL was written and it is now showing
up as ”unkown” when the SQL is executed. Note that the syntax is ”else <value>”. One common mistake is to
write it as ”else then <value>”. It is easy enough to fix, but Oracle will not help you more than to inform you
that you have a missing expression. The time I’ve lost looking for an error just to find the extra then is
embarrassing. It looks correct since all the previous lines has it, but the compiler is uncompromising on the
requirement to remove it.

One thing to remember is that multiple conditions may be true for a single row. In this case all three
conditions are true. So does it stop after the first true value or does it run through all, and the final result is the
result from last true condition?

select case

 when empno = 7839 then 1

 when ename = 'KING' then 2

 when sal = 5000 then 3

 end all_true

 from emp

 where empno = 7839;

The result is 1 and the reason is that it takes the first true value and then leaves the case statement. The
above statement also shows that a searched case does not need to have any correlation between the different
conditions. This is one of the strengths of case, while simultaneously being one of the most underused features.

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

The case for CASE Mathias Magnusson Page 6

 Update
All the power of case in the select clause can also be used in other parts of the SQL language. For

example, it is very common to see an update script that looks something like this.

update emp

 set sal = sal * 1.15

 where deptno = 10;

update emp

 set sal = sal * 1.05

 where deptno = 20;

update emp

 set sal = sal * 1.10

 where deptno = 30;

 This is of course not much of a problem in a table with 14 rows, but say that each statement takes an
hour or more to complete and updates just a small portion of the whole table. The time to run each statement
can then be a problem if the conditions are such that the whole table has to be read each time. The above
statements can be rewritten like this.

update emp

 set sal = sal * (case when deptno = 10 then 1.15

 when deptno = 20 then 1.05

 when deptno = 30 then 1.10

 end);

Case is here used to return the factor to use to adjust everyones salary. I find this easier to read and if
there are many update statements it will give a better overview over what changes are intended to be made.

Another situation where case is useful is when there are many columns than needs to be updated, but
the condition is not the same for each update.

update emp

 set sal = sal * (case deptno

 when 10 then 1.15

 when 20 then 1.05

 when 30 then 1.10

 end)

 ,comm = (case job

 when 'PRESIDENT' then 1500

 when 'MANAGER' then 1000

 when 'SALESMAN' then 3000

 when 'ANALYST' then 500

 else 200

 end);

Solving this with individual update statements would require eight individual statements if we assume
that there could be more departments and more job titles than specifically listed here. There could also be more
complicated situations causing more complex situations.

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

The case for CASE Mathias Magnusson Page 7

Where
Using case in a where is often useful when there are multiple combinations that all needs to be treated

as true. This can be especially true if some additional tests should be performed for all such conditions.
Consider this example.

select *

 from emp

 where case

 when job = 'PRESIDENT' and sal > 4500 then 1

 when job = 'MANAGER' and sal > 2500 then 1

 when job = 'SALESMAN' and sal > 1500 then 1

 else 0

 end = 1

 and sal / 10 = trunc(sal/10)

 and ename like '%A%';

Here we will retrieve employees that has a salary above a certain threshold per title for just some of the titles
an employee can have. For all those we want to make sure the salary can be divided by ten without getting a
rest and their name should contain an A. This example may not be very realistic, but it shows the power of
using case in the where clause. Note how the condition on the case compares the result of the whole case
expression with a value. It may look very strange in the beginning, but it is very useful once you get used to
that syntax.

Order By
Sometimes sorting needs to be done in a way that neither descending nor ascending will solve. Say that

you want to sort the employees such that those in department 20 is listed before those in 10, with those in
department 30 coming last, then something like this would do the trick.
select *

 from emp

 order by case deptno

 when 10 then 2

 when 20 then 1

 when 30 then 3

 else 4

 end;

This translates 20 to 1, 10 to 2, 30 to 3, and anything else to 4 and those translated values is then what
the rows is sorted by. This can be very powerful when specialized reporting needs has to be supported.

Another case is when you want to treat two groups as if they were one. Say that you want to return all
employees ordered by deptno and salary, but department 10 and 30 should be treated as the same. That is
employees within those departments should be grouped together and ordered by salary. This SQL shows one
way to achieve that.

select *

 from emp

 order by case deptno

 when 10 then 10

 when 30 then 10

 else deptno

 end

 ,sal desc;

Note how all other departments just keeps their deptno via the else. In fact, the ”when 10” line could be
removed as it doesn’t change the value. I would keep it just for the declarative value in showing exactly what

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

The case for CASE Mathias Magnusson Page 8

we want to achieve.

Group By
Using case when aggregating data can provide some unexpected power. Let us start with a simple case

where we report total salary for management, workers, and sales.

select case job

 when 'PRESIDENT' then 'MGMT'

 when 'MANAGER' then 'MGMT'

 when 'SALESMAN' then 'SALES'

 when 'CLERK' then 'WORK'

 when 'ANALYST' then 'WORK'

 end cat

 ,sum(sal)

 from emp

 group by case job

 when 'PRESIDENT' then 'MGMT'

 when 'MANAGER' then 'MGMT'

 when 'SALESMAN' then 'SALES'

 when 'CLERK' then 'WORK'

 when 'ANALYST' then 'WORK'

 end;

The same case statement is used twice here. First to translate the job titles to the categories we are
interested in and then to group by the same categories. The one difference is that a column alias can not be
declared for it in the group by (see cat in select clause).

It would of course be possible to also use case to control the final order of the report or having to filter
the aggregated data. Here is an example of doing both in an expanded version of the previous example.

select case job

 when 'PRESIDENT' then 'MGMT'

 when 'MANAGER' then 'MGMT'

 when 'SALESMAN' then 'SALES'

 when 'CLERK' then 'WORK'

 when 'ANALYST' then 'WORK'

 end cat

 ,sum(sal)

 from emp

 group by case job

 when 'PRESIDENT' then 'MGMT'

 when 'MANAGER' then 'MGMT'

 when 'SALESMAN' then 'SALES'

 when 'CLERK' then 'WORK'

 when 'ANALYST' then 'WORK'

 end

having case

 when sum(sal) < 9000 then 1

 when sum(sal) > 11000 then 1

 else 0

 end = 1

order by case cat

 when 'PRESIDENT' then 3

 when 'MANAGER' then 3

 when 'SALESMAN' then 1

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

The case for CASE Mathias Magnusson Page 9

 when 'CLERK' then 2

 when 'ANALYST' then 2

 end;

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

The case for CASE Mathias Magnusson Page 10

Is this an excessive use of case? Probably, and it could be more maintainable by using subquery
refactoring (WITH clause) or an inline view (select in the from clause). That would allow the same functionality
without repeating the same thing so many times. However, this article’s focus is to show case and adding in
more SQL features would not help understanding the powerful features of case.

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com

The case for CASE Mathias Magnusson Page 11

Pivot
Say that you want to produce a report showing each department on a row with a total salary per title. It

can be done with a series of unions and summing the results, but it can be done with a single select using case.
Here is one version of this.

select deptno

 ,sum(case job when 'PRESIDENT' then sal else 0 end) pres_sal

 ,sum(case job when 'MANAGER' then sal else 0 end) mgr_sal

 ,sum(case job when 'SALESMAN' then sal else 0 end) sls_sal

 ,sum(case job when 'CLERK' then sal else 0 end) clk_sal

 ,sum(case job when 'ANALYST' then sal else 0 end) anl_sal

 from emp

group by deptno;

We group the data by deptno and use one case per title to report just salaries for that title in that
column. This gives us a nice report showing how much salary each department spends in each job title.

This is a very powerful feature once you wrap your head around the basic construct. You will start recognizing
areas where this technique can be used. You will also be able to stop co-workers from reinventing the wheel
when a pivot need comes up.

Conclusion
This article has reviewed the use of CASE in SQL. It is very powerful and this article has tried to show

some of the many flexible ways it can be used to extend the power of SQL.

I hope this article helps you. Please send comments and questions to mathias.magnusson@gmail.com
or visit the comment page linked to from http://mathiasmagnusson.com/oracle-talk/articles.

mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
mailto:mathias.magnusson@gmail.com
http://mathiasmagnusson.com/oracle-talk/articles
mailto:mathias.magnusson@gmail.com

